Zariski dense subgroups of arithmetic groups
نویسندگان
چکیده
منابع مشابه
Zariski density and computing in arithmetic groups
For n > 2, let Γn denote either SL(n,Z) or Sp(n,Z). We give a practical algorithm to compute the level of the maximal principal congruence subgroup in an arithmetic group H ≤ Γn. This forms the main component of our methods for computing with such arithmetic groups H. More generally, we provide algorithms for computing with Zariski dense groups in Γn. We use our GAP implementation of the algori...
متن کاملZariski Dense Subgroups of Semisimple Algebraic Groups with Isomorphic p-adic Closures
We prove under certain natural conditions the finiteness of the number of isomorphism classes of Zariski dense subgroups in semisimple groups with isomorphic p-adic closures.
متن کاملZariski dense surface subgroups in SL(4,Z)
The result of [6] is the existence of an infinite family of Zariski dense surface subgroups of fixed genus inside SL(3,Z); here we exhibit such subgroups inside SL(4,Z) and symplectic groups. In this setting the power of such a result comes in large part from the conclusion that the groups are Zariski dense the existence of surface groups inside SL(4,Z) can be proved fairly easily, since it’s n...
متن کاملZariski dense surface subgroups in SL(3,Z)
The nature of finitely generated infinite index subgroups of SL(3,Z) remains extremely mysterious. It follows from the famous theorem of Tits [12] that free groups abound and, moreover, Zariski dense free groups abound. Less trivially, classical arithmetic considerations (see for example §6.1 of [9]) can be used to construct surface subgroups of SL(3,Z) of every genus ≥ 2. However these are con...
متن کاملConstructing Arithmetic Subgroups of Unipotent Groups
Let G be a unipotent algebraic subgroup of some GLm(C) defined over Q. We describe an algorithm for finding a finite set of generators of the subgroup G(Z) = G ∩ GLm(Z). This is based on a new proof of the result (in more general form due to Borel and Harish-Chandra) that such a finite generating set exists.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1987
ISSN: 0021-8693
DOI: 10.1016/0021-8693(87)90106-2